Package index
-
UpdateEnvCache()
- Handy
CondaEnvManger
instance modifier
-
resetCache()
- Reset a conda environment
-
saveToCache()
- Save a conda environment manager to cache
-
getCache()
- Get current cache of conda environments
-
getCachePath()
- Get path to package config cache
-
reloadCache()
- Reload cache from disk
-
CondaEnv()
- Handy
CondaEnv
instance constructor
-
CondaManager()
- Handy
CondaEnvManger
instance constructor
-
isValid()
- Check the validity of conda environment's components
-
checkCondaBin()
checkCondaEnvPath()
checkCondaEnvName()
checkCondaEnv()
- Check the validity of conda environment's components
-
DoIntegrate()
- Integrate layers using one or multiple integration method(s)
-
CombatIntegration()
- Run ComBat on Seurat's Assay5 object through
IntegrateLayers
-
HarmonyIntegration()
HarmonyIntegration.fix()
- Run Harmony on Seurat's Assay5 object through
IntegrateLayers
-
MNNIntegration()
- Run classical MNN on Seurat's Assay5 object through
IntegrateLayers
-
ScanoramaIntegration()
- Run Scanorama on Seurat's Assay5 object through
IntegrateLayers
-
bbknnIntegration()
- Run bbknn on Seurat's Assay5 object through
IntegrateLayers
-
scANVIIntegration()
- Run scANVI on Seurat's Assay5 object through
IntegrateLayers
-
scVIIntegration()
scVIIntegration.fix()
- Run scVI on Seurat's Assay5 object through
IntegrateLayers
-
trVAEIntegration()
- Run trVAE on Seurat's Assay5 object through
IntegrateLayers
-
RPCAIntegration()
- Seurat-RPCA Integration (from Seurat)
-
CCAIntegration()
- Seurat-CCA Integration (from Seurat)
-
FastMNNIntegration()
- Run fastMNN in Seurat 5 (from SeuratWrappers)
-
FindOptimalClusters()
- Find a clustering that maximises NMI or ARI
-
CellCycleScoringPerBatch()
- Score cell cycle phases per batch
-
ScoreARI()
AddScoreARI()
- Score a clustering result with adjusted rand index
-
ScoreASW()
AddScoreASW()
ScoreASWBatch()
AddScoreASWBatch()
- Score an embedding or a count matrix with the average silhouette width
-
ScoreRegressPC.CellCycle()
AddScoreRegressPC.CellCycle()
- Score a corrected or uncorrected PCA to estimate the contribution of S and G2M scores to variance
-
ScoreConnectivity()
AddScoreConnectivity()
- Score a knn graph based on cell-type label connectivity
-
ScoreDensityPC()
AddScoreDensityPC()
- Score a corrected or uncorrected PCA to estimate batch mixing
-
ScoreKBET()
AddScoreKBET()
- Score an embedding or a knn graph with the kBET test
-
AddScoreLISI()
ScoreLISI()
- Score a dimensionality reduction embedding or knn graph using the Local Inverse Simpson Index
-
ScoreNMI()
AddScoreNMI()
- Score a clustering result with normalised mutual information
-
ScoreRegressPC()
AddScoreRegressPC()
- Score a corrected or uncorrected PCA to estimate batch mixing
-
ScaleScores()
- Scale the scores in the score tibble to plot them
-
PlotScores()
- Visualise and compare the performances of integration algorithms
-
GetMiscIntegrations()
GetMiscScores()
IntegrationScores()
- Retrieve integration scores from a Seurat object
-
SetMiscScore()
- Set the value of a score in the score tibble
-
AddMiscIntegrations()
AddMiscScores()
- Add integration(s) or score(s) slot(s) to the score tibble
-
SymmetrizeKnn()
- Symmetrize a nearest neighbours graph
-
CutKnn()
- Remove excessive number of neighbours in a knn graph
-
ExpandNeighbours()
- Expand knn graph to increase the number of neighbours
-
GetConnectivities()
- Derive connectivities from distances
Connectivity between batches
Handy functions to overview inter- and intra-batches connections in a knn graph
-
GetPropInterBatch()
- Calculate proportion of nearest neighbours between batches
-
GetPropIntraBatch()
- Calculate proportion of nearest neighbours within batches
-
NormaliseL2()
- Normalise a matrix using L2 norm
-
rowSort()
colSort()
rowSorted()
colSorted()
- Matrix sorting
-
symmetrize.pmax.sparse()
symmetrize.pmin.sparse()
- Matrix symmetrizing
-
rowSort()
colSort()
rowSorted()
colSorted()
- Matrix sorting
-
rowcol2idx()
idx2col()
idx2row()
- Matrix indexing